3.8.100 \(\int \frac {(a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x))}{(c-i c \tan (e+f x))^{3/2}} \, dx\) [800]

3.8.100.1 Optimal result
3.8.100.2 Mathematica [A] (verified)
3.8.100.3 Rubi [A] (verified)
3.8.100.4 Maple [B] (verified)
3.8.100.5 Fricas [B] (verification not implemented)
3.8.100.6 Sympy [F]
3.8.100.7 Maxima [A] (verification not implemented)
3.8.100.8 Giac [F]
3.8.100.9 Mupad [F(-1)]

3.8.100.1 Optimal result

Integrand size = 45, antiderivative size = 155 \[ \int \frac {(a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x))}{(c-i c \tan (e+f x))^{3/2}} \, dx=-\frac {2 a^{3/2} B \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{c^{3/2} f}-\frac {(i A+B) (a+i a \tan (e+f x))^{3/2}}{3 f (c-i c \tan (e+f x))^{3/2}}+\frac {2 a B \sqrt {a+i a \tan (e+f x)}}{c f \sqrt {c-i c \tan (e+f x)}} \]

output
-2*a^(3/2)*B*arctan(c^(1/2)*(a+I*a*tan(f*x+e))^(1/2)/a^(1/2)/(c-I*c*tan(f* 
x+e))^(1/2))/c^(3/2)/f+2*a*B*(a+I*a*tan(f*x+e))^(1/2)/c/f/(c-I*c*tan(f*x+e 
))^(1/2)-1/3*(I*A+B)*(a+I*a*tan(f*x+e))^(3/2)/f/(c-I*c*tan(f*x+e))^(3/2)
 
3.8.100.2 Mathematica [A] (verified)

Time = 7.25 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.41 \[ \int \frac {(a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x))}{(c-i c \tan (e+f x))^{3/2}} \, dx=\frac {a^{3/2} \sec ^2(e+f x) \left (\sqrt {a} (6 i B+(A-i B) \cos (2 (e+f x))+(i A+B) \sin (2 (e+f x))) \sqrt {1-i \tan (e+f x)}-6 i B \arcsin \left (\frac {\sqrt {a+i a \tan (e+f x)}}{\sqrt {2} \sqrt {a}}\right ) (\cos (2 (e+f x))-i \sin (2 (e+f x))) \sqrt {a+i a \tan (e+f x)}\right )}{3 c f \sqrt {1-i \tan (e+f x)} (i+\tan (e+f x)) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \]

input
Integrate[((a + I*a*Tan[e + f*x])^(3/2)*(A + B*Tan[e + f*x]))/(c - I*c*Tan 
[e + f*x])^(3/2),x]
 
output
(a^(3/2)*Sec[e + f*x]^2*(Sqrt[a]*((6*I)*B + (A - I*B)*Cos[2*(e + f*x)] + ( 
I*A + B)*Sin[2*(e + f*x)])*Sqrt[1 - I*Tan[e + f*x]] - (6*I)*B*ArcSin[Sqrt[ 
a + I*a*Tan[e + f*x]]/(Sqrt[2]*Sqrt[a])]*(Cos[2*(e + f*x)] - I*Sin[2*(e + 
f*x)])*Sqrt[a + I*a*Tan[e + f*x]]))/(3*c*f*Sqrt[1 - I*Tan[e + f*x]]*(I + T 
an[e + f*x])*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])
 
3.8.100.3 Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.08, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {3042, 4071, 87, 57, 45, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x))}{(c-i c \tan (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x))}{(c-i c \tan (e+f x))^{3/2}}dx\)

\(\Big \downarrow \) 4071

\(\displaystyle \frac {a c \int \frac {\sqrt {i \tan (e+f x) a+a} (A+B \tan (e+f x))}{(c-i c \tan (e+f x))^{5/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {a c \left (\frac {i B \int \frac {\sqrt {i \tan (e+f x) a+a}}{(c-i c \tan (e+f x))^{3/2}}d\tan (e+f x)}{c}-\frac {(B+i A) (a+i a \tan (e+f x))^{3/2}}{3 a c (c-i c \tan (e+f x))^{3/2}}\right )}{f}\)

\(\Big \downarrow \) 57

\(\displaystyle \frac {a c \left (\frac {i B \left (-\frac {a \int \frac {1}{\sqrt {i \tan (e+f x) a+a} \sqrt {c-i c \tan (e+f x)}}d\tan (e+f x)}{c}-\frac {2 i \sqrt {a+i a \tan (e+f x)}}{c \sqrt {c-i c \tan (e+f x)}}\right )}{c}-\frac {(B+i A) (a+i a \tan (e+f x))^{3/2}}{3 a c (c-i c \tan (e+f x))^{3/2}}\right )}{f}\)

\(\Big \downarrow \) 45

\(\displaystyle \frac {a c \left (\frac {i B \left (-\frac {2 a \int \frac {1}{i a+\frac {i c (i \tan (e+f x) a+a)}{c-i c \tan (e+f x)}}d\frac {\sqrt {i \tan (e+f x) a+a}}{\sqrt {c-i c \tan (e+f x)}}}{c}-\frac {2 i \sqrt {a+i a \tan (e+f x)}}{c \sqrt {c-i c \tan (e+f x)}}\right )}{c}-\frac {(B+i A) (a+i a \tan (e+f x))^{3/2}}{3 a c (c-i c \tan (e+f x))^{3/2}}\right )}{f}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {a c \left (\frac {i B \left (\frac {2 i \sqrt {a} \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{c^{3/2}}-\frac {2 i \sqrt {a+i a \tan (e+f x)}}{c \sqrt {c-i c \tan (e+f x)}}\right )}{c}-\frac {(B+i A) (a+i a \tan (e+f x))^{3/2}}{3 a c (c-i c \tan (e+f x))^{3/2}}\right )}{f}\)

input
Int[((a + I*a*Tan[e + f*x])^(3/2)*(A + B*Tan[e + f*x]))/(c - I*c*Tan[e + f 
*x])^(3/2),x]
 
output
(a*c*(-1/3*((I*A + B)*(a + I*a*Tan[e + f*x])^(3/2))/(a*c*(c - I*c*Tan[e + 
f*x])^(3/2)) + (I*B*(((2*I)*Sqrt[a]*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f 
*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x]])])/c^(3/2) - ((2*I)*Sqrt[a + I*a 
*Tan[e + f*x]])/(c*Sqrt[c - I*c*Tan[e + f*x]])))/c))/f
 

3.8.100.3.1 Defintions of rubi rules used

rule 45
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0] &&  !GtQ[c, 0]
 

rule 57
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] & 
& GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m 
+ n + 2, 0] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c 
, d, m, n, x]
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4071
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Si 
mp[a*(c/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x], x 
, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c 
+ a*d, 0] && EqQ[a^2 + b^2, 0]
 
3.8.100.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 405 vs. \(2 (126 ) = 252\).

Time = 0.39 (sec) , antiderivative size = 406, normalized size of antiderivative = 2.62

method result size
derivativedivides \(-\frac {\sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, a \left (3 i B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )^{3}-9 i B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )-9 B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )^{2}-7 i B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )^{2}+A \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}\, \tan \left (f x +e \right )^{2}+3 B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c +5 i B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}+12 B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )+A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right )}{3 f \,c^{2} \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \left (i+\tan \left (f x +e \right )\right )^{3} \sqrt {a c}}\) \(406\)
default \(-\frac {\sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, a \left (3 i B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )^{3}-9 i B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )-9 B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )^{2}-7 i B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )^{2}+A \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}\, \tan \left (f x +e \right )^{2}+3 B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c +5 i B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}+12 B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )+A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right )}{3 f \,c^{2} \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \left (i+\tan \left (f x +e \right )\right )^{3} \sqrt {a c}}\) \(406\)
parts \(-\frac {A \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, a \left (1+\tan \left (f x +e \right )^{2}\right )}{3 f \,c^{2} \left (i+\tan \left (f x +e \right )\right )^{3}}-\frac {i B \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, a \left (9 i \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) \tan \left (f x +e \right )^{2} a c +3 \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) \tan \left (f x +e \right )^{3} a c -3 i \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c -12 i \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )-9 \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) \tan \left (f x +e \right ) a c -7 \tan \left (f x +e \right )^{2} \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}+5 \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right )}{3 f \,c^{2} \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \left (i+\tan \left (f x +e \right )\right )^{3} \sqrt {a c}}\) \(411\)

input
int((a+I*a*tan(f*x+e))^(3/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(3/2),x,m 
ethod=_RETURNVERBOSE)
 
output
-1/3/f*(a*(1+I*tan(f*x+e)))^(1/2)*(-c*(I*tan(f*x+e)-1))^(1/2)*a/c^2*(3*I*B 
*ln((a*c*tan(f*x+e)+(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c)^(1/2)) 
*a*c*tan(f*x+e)^3-9*I*B*ln((a*c*tan(f*x+e)+(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^ 
2))^(1/2))/(a*c)^(1/2))*a*c*tan(f*x+e)-9*B*ln((a*c*tan(f*x+e)+(a*c)^(1/2)* 
(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c)^(1/2))*a*c*tan(f*x+e)^2-7*I*B*(a*c)^(1 
/2)*(a*c*(1+tan(f*x+e)^2))^(1/2)*tan(f*x+e)^2+A*(a*c*(1+tan(f*x+e)^2))^(1/ 
2)*(a*c)^(1/2)*tan(f*x+e)^2+3*B*ln((a*c*tan(f*x+e)+(a*c)^(1/2)*(a*c*(1+tan 
(f*x+e)^2))^(1/2))/(a*c)^(1/2))*a*c+5*I*B*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2 
))^(1/2)+12*B*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2)*tan(f*x+e)+A*(a*c)^ 
(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c*(1+tan(f*x+e)^2))^(1/2)/(I+tan(f* 
x+e))^3/(a*c)^(1/2)
 
3.8.100.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 380 vs. \(2 (121) = 242\).

Time = 0.29 (sec) , antiderivative size = 380, normalized size of antiderivative = 2.45 \[ \int \frac {(a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x))}{(c-i c \tan (e+f x))^{3/2}} \, dx=\frac {3 \, c^{2} f \sqrt {-\frac {B^{2} a^{3}}{c^{3} f^{2}}} \log \left (\frac {4 \, {\left (2 \, {\left (B a e^{\left (3 i \, f x + 3 i \, e\right )} + B a e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} + {\left (c^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} - c^{2} f\right )} \sqrt {-\frac {B^{2} a^{3}}{c^{3} f^{2}}}\right )}}{B a e^{\left (2 i \, f x + 2 i \, e\right )} + B a}\right ) - 3 \, c^{2} f \sqrt {-\frac {B^{2} a^{3}}{c^{3} f^{2}}} \log \left (\frac {4 \, {\left (2 \, {\left (B a e^{\left (3 i \, f x + 3 i \, e\right )} + B a e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} - {\left (c^{2} f e^{\left (2 i \, f x + 2 i \, e\right )} - c^{2} f\right )} \sqrt {-\frac {B^{2} a^{3}}{c^{3} f^{2}}}\right )}}{B a e^{\left (2 i \, f x + 2 i \, e\right )} + B a}\right ) - 2 \, {\left ({\left (i \, A + B\right )} a e^{\left (5 i \, f x + 5 i \, e\right )} + {\left (i \, A - 5 \, B\right )} a e^{\left (3 i \, f x + 3 i \, e\right )} - 6 \, B a e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{6 \, c^{2} f} \]

input
integrate((a+I*a*tan(f*x+e))^(3/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(3/ 
2),x, algorithm="fricas")
 
output
1/6*(3*c^2*f*sqrt(-B^2*a^3/(c^3*f^2))*log(4*(2*(B*a*e^(3*I*f*x + 3*I*e) + 
B*a*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x 
+ 2*I*e) + 1)) + (c^2*f*e^(2*I*f*x + 2*I*e) - c^2*f)*sqrt(-B^2*a^3/(c^3*f^ 
2)))/(B*a*e^(2*I*f*x + 2*I*e) + B*a)) - 3*c^2*f*sqrt(-B^2*a^3/(c^3*f^2))*l 
og(4*(2*(B*a*e^(3*I*f*x + 3*I*e) + B*a*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x 
 + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)) - (c^2*f*e^(2*I*f*x + 2* 
I*e) - c^2*f)*sqrt(-B^2*a^3/(c^3*f^2)))/(B*a*e^(2*I*f*x + 2*I*e) + B*a)) - 
 2*((I*A + B)*a*e^(5*I*f*x + 5*I*e) + (I*A - 5*B)*a*e^(3*I*f*x + 3*I*e) - 
6*B*a*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f* 
x + 2*I*e) + 1)))/(c^2*f)
 
3.8.100.6 Sympy [F]

\[ \int \frac {(a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x))}{(c-i c \tan (e+f x))^{3/2}} \, dx=\int \frac {\left (i a \left (\tan {\left (e + f x \right )} - i\right )\right )^{\frac {3}{2}} \left (A + B \tan {\left (e + f x \right )}\right )}{\left (- i c \left (\tan {\left (e + f x \right )} + i\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate((a+I*a*tan(f*x+e))**(3/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))**( 
3/2),x)
 
output
Integral((I*a*(tan(e + f*x) - I))**(3/2)*(A + B*tan(e + f*x))/(-I*c*(tan(e 
 + f*x) + I))**(3/2), x)
 
3.8.100.7 Maxima [A] (verification not implemented)

Time = 0.42 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.10 \[ \int \frac {(a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x))}{(c-i c \tan (e+f x))^{3/2}} \, dx=-\frac {{\left (6 \, B a \arctan \left (\cos \left (f x + e\right ), \sin \left (f x + e\right ) + 1\right ) + 6 \, B a \arctan \left (\cos \left (f x + e\right ), -\sin \left (f x + e\right ) + 1\right ) - 2 \, {\left (-i \, A - B\right )} a \cos \left (3 \, f x + 3 \, e\right ) - 12 \, B a \cos \left (f x + e\right ) + 3 i \, B a \log \left (\cos \left (f x + e\right )^{2} + \sin \left (f x + e\right )^{2} + 2 \, \sin \left (f x + e\right ) + 1\right ) - 3 i \, B a \log \left (\cos \left (f x + e\right )^{2} + \sin \left (f x + e\right )^{2} - 2 \, \sin \left (f x + e\right ) + 1\right ) - 2 \, {\left (A - i \, B\right )} a \sin \left (3 \, f x + 3 \, e\right ) - 12 i \, B a \sin \left (f x + e\right )\right )} \sqrt {a}}{6 \, c^{\frac {3}{2}} f} \]

input
integrate((a+I*a*tan(f*x+e))^(3/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(3/ 
2),x, algorithm="maxima")
 
output
-1/6*(6*B*a*arctan2(cos(f*x + e), sin(f*x + e) + 1) + 6*B*a*arctan2(cos(f* 
x + e), -sin(f*x + e) + 1) - 2*(-I*A - B)*a*cos(3*f*x + 3*e) - 12*B*a*cos( 
f*x + e) + 3*I*B*a*log(cos(f*x + e)^2 + sin(f*x + e)^2 + 2*sin(f*x + e) + 
1) - 3*I*B*a*log(cos(f*x + e)^2 + sin(f*x + e)^2 - 2*sin(f*x + e) + 1) - 2 
*(A - I*B)*a*sin(3*f*x + 3*e) - 12*I*B*a*sin(f*x + e))*sqrt(a)/(c^(3/2)*f)
 
3.8.100.8 Giac [F]

\[ \int \frac {(a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x))}{(c-i c \tan (e+f x))^{3/2}} \, dx=\int { \frac {{\left (B \tan \left (f x + e\right ) + A\right )} {\left (i \, a \tan \left (f x + e\right ) + a\right )}^{\frac {3}{2}}}{{\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((a+I*a*tan(f*x+e))^(3/2)*(A+B*tan(f*x+e))/(c-I*c*tan(f*x+e))^(3/ 
2),x, algorithm="giac")
 
output
integrate((B*tan(f*x + e) + A)*(I*a*tan(f*x + e) + a)^(3/2)/(-I*c*tan(f*x 
+ e) + c)^(3/2), x)
 
3.8.100.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (e+f x))^{3/2} (A+B \tan (e+f x))}{(c-i c \tan (e+f x))^{3/2}} \, dx=\int \frac {\left (A+B\,\mathrm {tan}\left (e+f\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}{{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \]

input
int(((A + B*tan(e + f*x))*(a + a*tan(e + f*x)*1i)^(3/2))/(c - c*tan(e + f* 
x)*1i)^(3/2),x)
 
output
int(((A + B*tan(e + f*x))*(a + a*tan(e + f*x)*1i)^(3/2))/(c - c*tan(e + f* 
x)*1i)^(3/2), x)